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ABSTRACT 

Aerodynamic prediction software is often used in the early stages of missile 

systems designed to quickly and accurately estimate the aerodynamics of a wide variety 

of missile configuration designs operating over many different flight regimes. It is also 

possible to use these empirical packages to validate flight data collected from wind tunnel 

tests and other open sources. Analysis of such data provides users with insights to the 

performance of a particular missile system and if necessary, enables the development of 

an appropriate defense system. 

Wind tunnel test data on an SA-2 class missile modified by suitable modeling was 

provided by MSIC. For this Thesis, this data set became the bench-mark for validating 

the Missile Datcom (97) empirical code that was used to compute the performance of the 

missile. The missile geometry was modeled using the interface MissileLab.  A series of 

simulations for different flight operating conditions was carried out. The primary 

quantities compared were the axial force coefficient, CA and the skin friction coefficient, 

Cf. This Thesis describes the results obtained along with the geometry changes that 

became necessary to obtain reasonable agreement.  
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NOMENCLATURE 

CA = Axial force coefficient 

CAb = CA due to base pressure 

CAf = CA due to skin friction 

CALE  = Leading edge CA 

CA0 = CA at zero normal force 

CAp = CA due to pressure 

CATE =  Trailing edge CA 

CAw = CA due to wave drag 

CAwn = CA due to nose 

CAwa = CAw due to after body 

CD =  Coefficient of drag 

CD0 = CD at zero lift 

Cf = Coefficient of skin friction 

CL = Coefficient of lift 

CN = Coefficient of normal force 

Cp = Coefficient of pressure 

Re = Reynolds number 

α =  Angle Alpha; Angle of Attack 
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I. INTRODUCTION  

A. DESCRIPTION OF WORK 

Aerodynamic predictions, using various prediction tools, have been practiced for 

many years. Comparisons and validations are usually made between computations, 

simulations, and wind tunnel test data in an attempt to predict actual flight performance. 

In this Thesis, a combination of experimental wind tunnel test data and simulations data 

became available for use to compare with that predicted by codes. This was an attempt to 

investigate the model geometry and flight conditions that will provide the aerodynamic 

properties matching the given data. When fully implemented and validated, the technique 

becomes another tool in the hands of an analyst to assess the performance of missile. 

The missile system of particular interest to the sponsor was the SA-2 like 

configuration. Its flight characteristics were experimentally determined and subsequently 

also modeled. This combined data set for the missile system was provided by Missile and 

Space Intelligence Center (MSIC). Such data, however, tends to be incomplete due to 

limitations of testing some of which include altitude simulation, scale effects and free 

stream turbulence effects. Thus, it is imperative that the performance prediction code 

used be capable of allowing these factors to be included in the modeling to generate a 

resultant data base that can be used for a comprehensive range of flight conditions 

Therefore, to validate and analyze the missile system, a methodology was developed to 

build up the missile model accurately using the US Army AMRDEC package, described 

as MissileLab [5]. It automatically generates the     input files for the USAF missile 

performance evaluation code Missile Datcom (97) [4]. The design was put through 

several simulations. This involved studies at many different flow conditions, such as:  

• Mach numbers 

• Altitudes 

• Angles of Attack 

• Missile surface geometry conditions 

• Boundary layer conditions 
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Results from such an extensive research analysis were analyzed and refined 

through changes in missile configurations or test conditions. These results were then 

compared to the data provided and comments and recommendations were made. 

B. MISSILE PREDICTION EMPIRICAL SOFTWARE CODE 

Although many prediction codes are available in the market, it is the sponsor's 

requirement to produce as many aerodynamic performance coefficients as possible that 

led to the use of Missile Datcom (97) [3]. Studies have been conducted to validate the 

results produced by Missile Datcom (97) and empirical data [3]. Under certain condition, 

results have shown [3] that prediction of axial force by Missile Datcom (97) falls within 

11.69% accuracy. A similar and comparable performance prediction code, namely AP05, 

is available but it predicts fewer performance coefficients. It is more suitable for 2D 

modeling; whereas Missile Datcom (97) can be used for 3D aerodynamic prediction. 

Missile Datcom (97) has many key features [3] which make it an attractive 

aerodynamic prediction tool. It possesses a trimmed flight function and is able to use 

experimental data to model a particular configuration. Missile Datcom (97) has the 

capability of modeling standard airfoil design and user defined airfoils. It also allows air 

breathing propulsion systems to be analyzed. However, it lacks plotting functions as well 

as geometry sketch functions, requiring the user to have a strong understanding on 

FORTRAN programming and the need for a post-processing tool. Although the output 

files for TECPLOT can be generated, the unavailability of this graphics package at NPS 

implied use of other methods. In this Thesis, post processing is done using Excel to 

present the results.   

Interface with Missile Datcom (97) is through a Windows-based software known 

as MissileLab. MissileLab allows users with minimum knowledge of FORTRAN 

programming to utilize the aerodynamic prediction capability of Missile Datcom (97). 

One of the main features of MissileLab is the capability to produce 3D sketches of any 

parts of a missile configuration as it is being built, thereby eliminating user input errors.     
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C. OUTPUT ANALYSIS 

From the data provided by MSIC and the time frame of the research available, 

two parameters of significant importance were analyzed in this Thesis. These were: axial 

force coefficient CA for the body and fins and, also, CA due to skin friction for the body 

only. Both these parameters provide insights into the performance of the missile as 

discussed below.  

D. MISSILE PERFORMANCE 

The SA-2 class missile in this Thesis operates in a wide range of conditions. The 

missile has a 2-stage propulsion system, with the booster detaching itself 3 to 5 seconds 

after launch. The main engine then provides the thrust for another 25 seconds before 

burning out [6]. By then, the missile would have reached Mach 3.  

With its first employment in 1957 and its first successful publicized engagement 

of the U2 Reconnaissance aircraft in 1960 piloted by Francis Gary Powers [6], it has 

since been widely used in many air defense systems. The operating altitude of the U2 is 

27,000m [6]. The missile is therefore required to operate over a wide regime of altitudes, 

accelerating through subsonic to supersonic and high Angle of Attacks (α) due to its 

maneuvering. The kill envelope is shown in Figure 7. 

 

 

Figure 1 Kill Envelope of Various Generations of the S-75 System [From 6] 
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E. IMPORTANCE OF CA AND CF ANALYSIS 

The standard coefficients such as various forces (axial, normal and side) and of 

the various moments are the quantities of interest. However, the wind tunnel test data 

placed notable emphasis on the axial force skin friction coefficient, with and without 

engine power. Thus, the comparisons to be made will focus on these two quantities. It is 

noted here that other quantities were also computed and would be discussed as well. The 

axial force is a critical quantity in the design of a missile and primarily determines the 

range and the maneuverability of the missile. In addition, the drag of a missile is a strong 

function of the flight Mach number. Different flow related mechanisms come into play at 

different speed regimes, as has been described in detail in [1]. As such, the aerodynamic 

prediction code must be capable of computing it by switching to the appropriate method 

of the computation based on the speed regime without user interference. Likewise, the 

skin friction also has to be computed based on the flow conditions at the wall.  

Even though all these details are considered, it will still not be possible to 

properly quantify these for the actual vehicle owing to the scale effects even in modeling. 

This is particularly true for small protuberances and appendage that a full-scale missile 

carries and the inclusion of their effects on the potential flow pressure distribution at the 

various speed ranges and on each other. 

1. CA Analysis 

It is well known that more than 50% of drag is body induced and thus, drag will 

be the primary focus in this Thesis through CA analysis in the predictions of the 

performance of the given missile system. The study of CA will allow predictions in the 

range of the missile, its speed, size of propulsion system, and its carriage effect on 

airborne systems. The overall CA of a missile body is further broken down into CAf (CA 

due to skin friction) and CAp (CA due to pressure). Thus,  

ApAfAo CCC +=
 

Predictions from CA and CN will then allow us to generate CL and CD of the 

missile using the following equations: 
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The general components making up the missile drag are shown in Figure 2. Drag 

prediction is done using a component buildup method by adding the individual drag of 

each component [1]. Missile Datcom (97) allows each component's drag coefficient to be 

analyzed.  

As the missile operates through a wide range of Mach numbers, the drag 

components will vary significantly, as shown in Figure 3. At subsonic speeds, skin 

friction dominates while at higher Mach numbers, wave drag will dominate [1]. 

  

 

Figure 2 Component Build-up Model [From 1] 
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Figure 3 Variation due to Mach Number of Drag Components [From 1] 

2. Cf Analysis 

A boundary layer exists between the body of the missile and the freestream. The 

shear force due to fluid viscosity at the wall is the source of the skin friction drag. The 

amount of skin friction drag depends not only on whether the layer is laminar or turbulent 

and can vary as much as 10 times [1], but also on whether a laminar separation bubble 

forms at different altitudes and flow Reynolds numbers. In fact, multiple regions of local 

separation are also possible in missile flow due to many vane sets and differently 

deflected flaps. A turbulent flow condition generally results in higher Cf values; 

compared to a laminar flow condition. It is also well known that Cf strongly depends on 

Reynolds number as shown below [2]: 

∞

∞∞=
μ

ρ dVRe
 

 

As Re increases, Cf decreases. And since the missile in question has an operating 

altitude from 0 to 30000m, it is crucial that thorough understanding be made of its 

operating conditions because its unit Reynolds number can change by three orders of 

magnitude from 105 to 108. 

Typical Reynolds number for the three different flow conditions: Laminar, 

Transitional and Turbulent is shown in Figure 4.  
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Figure 4 Cf vs. Reynolds Number [From 1] 

3. Other Force Components 

In addition, the general flow over a missile is very complicated. The strong 

vortical flow at angles of attack which develops over a body of revolution that comprises 

the missile also affects the local flow and its separation. This can be especially significant 

at large pitch and roll angles. The asymmetric formation of these structures and their 

interactions could lead to very large and unexpected side forces that are difficult to 

predict. Furthermore, these lead to unsteady forces that affect the maneuver 

characteristics of the missile. Thus, even though much emphasis is placed on analyzing 

the axial force and skin friction behavior, the other aspects are also briefly considered. 
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II. METHOD OF APPROACH 

A. DATA GIVEN 

A limited aerodynamic data set was provided by MSIC for comparison and use in 

this study. As already stated, this is a combination of experiments and simulation. Thus, 

the data set represents a sparse matrix of flow conditions and to a part of the much larger 

aerodynamic flight regime of the missile. Furthermore, since the SA-2 type missile is an 

incoming missile, it is difficult to establish the full performance details easily. In the data 

set provided, the skin friction values are given only for 0 deg α. 

MSIC also provided the geometry of the missile and is at best estimated from a 

scaled diagram with minimum dimensions. Most parts of the geometry are estimated 

through scaling and knowledge based on high speed missile systems. These estimations 

include airfoil geometry (cross section), nose geometry, center of gravity, and pivoting 

points for the wing control surfaces.  
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Figure 5 Missile Dimension Provided by MSIC 

1. MSIC Data Source 

a. Wind Tunnel Testing 

The primary data set for validations was obtained from wind tunnel tests. 

Subsequently, Simulink was used to complement this set and generate additional data. As 

this study compares the predicted results for a full-scale missile with the wind tunnel 

data, the following limitations must be kept in mind.  

It is generally not possible to adequately simulate the free flight, full-scale 

Reynolds number in experiments on scaled models. The maximum unit Reynolds number 
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that can be achieved in wind tunnel testing is about 105
 – 106. On the other hand, the 

missile experiences at least an order of magnitude higher unit Reynolds number over the 

different altitudes that it flies in. Thus, unless the boundary layer is tripped artificially to 

reproduce the effects of the higher flight Reynolds number, the laboratory data includes 

the effect of natural transition in addition to the presence of natural laminar flow over 

some of the body length. In order to induce transitional and turbulent flow over the 

object, trips were employed. However, utilization of trips to create the required flow 

condition is indeed an art and to accomplish it consistently to obtain different Reynolds 

numbers is difficult.  

Another well known limitation is the scale effect created due to the 

necessarily smaller scale of the laboratory scale model. A full scale wind tunnel testing of 

the model will not be practical. With a scaled model, the forces acting on the test object 

will be reduced proportionately while the coefficients remain the same. This reduction 

will increase measurement difficulties and reduce the accuracy of the measurements. For 

incompressible laminar flow over a flat plate the integrated skin friction coefficient [2] is: 

2/1Re
328.1

c
fC =

 

And for incompressible turbulent flow [2]: 

5/1Re
074.0

c
fC =

 

Thus, the laminar and turbulent skin friction coefficients vary as Re-1/2 and 

Re-1/5 respectively. As Reynolds number depends on the overall length 'c' over which the 

fluid is flowing, testing on smaller scale models tends to reduce the overall skin friction 

values when compared to that are encountered by the full scale missile. The relationship 

between Cf values and Reynolds number is shown in Figure 6. 
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Figure 6 Cf vs. Reynolds Number [From 2] 

Determination of these quantities over the full range of flight Mach 

numbers from subsonic through to hypersonic in the laboratory is a significant challenge. 

There is no one wind tunnel that can cover this wide range of flow conditions. The wind 

tunnel size tends to decrease as the Mach number increases. The test times also decrease. 

To minimize wind tunnel blockage effects, the models become even smaller at the higher 

Mach numbers. Thus, the uncertainty associated with the test data on some of the 

quantities of interest here increases. This is one of the reasons for extrapolating the wind 

tunnel test data to generate Simulink data for the higher flight conditions. 

b. Simulink 

A portion of the data given is supplemented by results generated from 

MATLAB/ Simulink modeling. This model is, however, developed from mathematical 

flight mechanics models, measured airframe properties and generated aerodynamic 

performance quantities. Thus, it lacks the fidelity and prediction capabilities of the 3-

dimensional 6 DOF aerodynamic prediction software. A prominent limitation, for 

example, was the state of boundary layer on the missile -- whether it was natural, 

transitional, or fully turbulent.  
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B. RESEARCH METHODOLOGY 

1. Geometry Coding 

Coding of the geometry is done through MissileLab. The Windows User Interface 

in MissileLab enables users to check the geometry at every input stage. This includes 3-

dimensional sketches of every component. This eliminates the need for tedious 

FORTRAN programming. To reduce design errors, MissileLab includes a self-check 

process to ensure that all geometries are consistent. A 3-dimensional sketch output from 

MissileLab is shown in Figure 7. This view is available throughout the geometry input 

stage allowing the user to make changes as needed.  

 

Figure 7 Coded 3-D Sketch of Missile with Booster Attached from MissileLab 

a.  Nose Geometry 

A tangential ogive nose has been selected based on the scaled drawing 

provided by MSIC. This ensures that there is no discontinuity in the curvature at the 

nose-body junction. 
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b. Fin Geometry 

Fin geometries are measured by hand to the best of the author's ability. 

The thickness of the fins and geometry of the airfoil have been selected based on 

knowledge of supersonic missiles. The geometry of the airfoil is an elliptical shape.  

Due to the lack of detailed technical drawings, the pivot point for 

controllable fins is assumed to be in the middle of the cord length.  

c. Body Geometry 

The data given for the body was with the booster attached. MSIC’s 

interest, however, is in the missile body aerodynamics after the booster separation phase. 

This occurs 3 to 5 seconds after launch. The MissileLab output for the missile after 

booster separation is shown in Figure 8 

 

Figure 8 Coded 3-D Sketch of Missile After Booster Separation 

d. Surface Roughness 

As surface roughness was not recorded in the data given by MSIC, an 

iterative process was adopted in an attempt to map the data provided. For CA mapping, 

even for a smooth surface (roughness = 0,) computed CA values from MissileLab yielded 
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readings well above those from MSIC tests. In the Cf mapping, using a surface roughness 

of 0.001016 produced results that were very close to the data provided. Therefore, this 

surface roughness has been selected. It is equivalent to a relatively smooth surface on 

which the paint is carefully applied. More discussions on the comparison will be carried 

out in later sections. 

2. Operating Conditions  

In general, the SA-2 type missile can operate over a wide range of flow conditions 

from M  = 0.8 to M = 2.5. However, the modern missiles may be expected to fly at even a 

higher speed range and also perform maneuvers that are quite dramatic and uncommon. 

Due to lack of specific data on the operating conditions of the missile, several 

permutations of conditions were arbitrarily selected for predicting the missile 

performance.  

a. Boundary Layer Conditions 

The state of the boundary layers is a significant parameter in the 

aerodynamic coefficients of interest. The large change in Reynolds number with the 

significant change in the altitude experienced by the missile means that both natural and 

fully turbulent boundary conditions have to be modeled. In addition, a combination of the 

two as also the possible formation of a laminar separation bubble will need to be 

considered at very high altitudes due to the large kinematic viscosity of air that can drop 

the Reynolds number to sufficiently low values where the effects of the bubble can begin 

to alter the skin friction values and also, CA significant. This was not pursued, however. 

b. Fins Deflections 

A trimmed flight condition has been modeled with no fin deflections.  
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c. Angle of Attack and Altitude 

Twelve angles of attack, α values were used in the simulations starting 

from 0 deg α to 24 deg α in increments of 2 deg. Altitudes selected were 0m, 5000m, 

10000m, 20000m, and 30000m.  

d. Base Drag 

With base drag forming as much as 50% of the total missile, data was 

obtained with Base Drag (power off) and without Base Drag (power on) for comparison. 

Moreover, after booster separation, the missile will continue to receive thrust from its 

second stage propulsion for another 20 seconds before cruising without power in the 

terminal stage. This necessitates the need to obtain data for both power on and power off. 

Based on MSIC recommendations, this Thesis’ work will focus on the power off 

condition. This is because of the missile flies under these conditions during the later stage 

of the cruise profile and, most importantly, in the terminal phase.  
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III. RESULTS 

A. SIMULATION CONDITIONS 

Part of the effort was aimed at generating the missile aerodynamic performance 

characteristics at conditions that envelope the flow conditions for which MSIC has 

supplied either the test data or the simulation data. It is also hoped that after establishing 

confidence in the computations by validating against the measured data, the 

characteristics for intermediate flow conditions can also be provided through this effort. 

The conditions chosen are shown in Table 1.  

 

Power 
Boundary 

Layer 
Conditions 

Surface 
Roughness Plots Varying 

(Altitude: m) 

Fixed 
(α: 

deg) 
Off Natural Smooth Cf vs. Altitude Mach Number (1.2, 3, 4.5) 0 

   Cf vs. Mach Number Altitude (5000, 30000) 0 
   Cf vs. Altitude Mach Number (1.2, 3, 4.5) 12 
   Cf vs. Mach Number Altitude (5000, 30000) 12 
  Rough Cf vs. Altitude Mach Number (1.2, 3, 4.5) 0 
   Cf vs. Mach Number Altitude (5000, 30000) 0 
   Cf vs. Altitude Mach Number (1.2, 3, 4.5) 12 
   Cf vs. Mach Number Altitude (5000, 30000) 12 

On Natural Smooth Cf vs. Altitude Mach Number (1.2, 3, 4.5) 0 
   Cf vs. Mach Number Altitude (5000, 30000) 0 
   Cf vs. Altitude Mach Number (1.2, 3, 4.5) 12 
   Cf vs. Mach Number Altitude (5000, 30000) 12 
  Rough Cf vs. Altitude Mach Number (1.2, 3, 4.5) 0 
   Cf vs. Mach Number Altitude (5000, 30000) 0 
   Cf vs. Altitude Mach Number (1.2, 3, 4.5) 12 
   Cf vs. Mach Number Altitude (5000, 30000) 12 

Off Turbulent Smooth Cf vs. Altitude Mach Number (1.2, 3, 4.5) 0 
   Cf vs. Mach Number Altitude (5000, 30000) 0 
   Cf vs. Altitude Mach Number (1.2, 3, 4.5) 12 
   Cf vs. Mach Number Altitude (5000, 30000) 12 
  Rough Cf vs. Altitude Mach Number (1.2, 3, 4.5) 0 
   Cf vs. Mach Number Altitude (5000, 30000) 0 
   Cf vs. Altitude Mach Number (1.2, 3, 4.5) 12 
   Cf vs. Mach Number Altitude (5000, 30000) 12 

On Turbulent Smooth Cf vs. Altitude Mach Number (1.2, 3, 4.5) 0 
   Cf vs. Mach Number Altitude (5000, 30000) 0 
   Cf vs. Altitude Mach Number (1.2, 3, 4.5) 12 
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   Cf vs. Mach Number Altitude (5000, 30000) 12 
  Rough Cf vs. Altitude Mach Number (1.2, 3, 4.5) 0 
   Cf vs. Mach Number Altitude (5000, 30000) 0 
   Cf vs. Altitude Mach Number (1.2, 3, 4.5) 12 
   Cf vs. Mach Number Altitude (5000, 30000) 12 

Table 1.   Flow Conditions for Cf Analysis 

 
 

Power 
Boundary 

Layer 
Conditions 

Surface 
Roughness Plots Varying 

(α: deg) 
Fixed 
(m) 

Off Natural Smooth CA vs. α Mach Number (1.2, 3, 4.5) 0 
   CA vs. Mach Number α (0, 12) 0 
   CA vs. α Mach Number (1.2, 3, 4.5) 20000
   CA vs. Mach Number α (0, 12) 20000
  Rough CA vs. α Mach Number (1.2, 3, 4.5) 0 
   CA vs. Mach Number α (0, 12) 0 
   CA vs. α Mach Number (1.2, 3, 4.5) 20000
   CA vs. Mach Number α (0, 12) 20000

On Natural Smooth CA vs. α Mach Number (1.2, 3, 4.5) 0 
   CA vs. Mach Number α (0, 12) 0 
   CA vs. α Mach Number (1.2, 3, 4.5) 20000
   CA vs. Mach Number α (0, 12) 20000
  Rough CA vs. α Mach Number (1.2, 3, 4.5) 0 
   CA vs. Mach Number α (0, 12) 0 
   CA vs. α Mach Number (1.2, 3, 4.5) 20000
   CA vs. Mach Number α (0, 12) 20000

Off Turbulent Smooth CA vs. α Mach Number (1.2, 3, 4.5) 0 
   CA vs. Mach Number α (0, 12) 0 
   CA vs. α Mach Number (1.2, 3, 4.5) 20000
   CA vs. Mach Number α (0, 12) 20000
  Rough CA vs. α Mach Number (1.2, 3, 4.5) 0 
   CA vs. Mach Number α (0, 12) 0 
   CA vs. α Mach Number (1.2, 3, 4.5) 20000
   CA vs. Mach Number α (0, 12) 20000

On Turbulent Smooth CA vs. α Mach Number (1.2, 3, 4.5) 0 
   CA vs. Mach Number α (0, 12) 0 
   CA vs. α Mach Number (1.2, 3, 4.5) 20000
   CA vs. Mach Number α (0, 12) 20000
  Rough CA vs. α Mach Number (1.2, 3, 4.5) 0 
   CA vs. Mach Number α (0, 12) 0 
   CA vs. α Mach Number (1.2, 3, 4.5) 20000
   CA vs. Mach Number α (0, 12) 20000

Table 2.   Flow Conditions for CA Analysis 
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B. COMPONENTS INVOLVED IN AXIAL FORCE COEFFICIENT 

The total axial force component of a missile includes several components. Missile 

Datcom (97) calculates the axial force coefficient by including the various components of 

friction, pressure/wave, and base drag for the missile body as well as all the fins. In 

addition, the values arising from their interference are also calculated and output in a 

table. The contributions of each of these factors are shown in Figure 9 and Figure 10. It 

can be seen that base drag is the largest component and it contributes almost 50% to the 

overall missile axial force coefficient CA. There is also a significant change in CA with 

Mach number, which will be discussed in later sections.  

 

CA Components vs Mach Number 
(Power Off, Turbulent, Roughness 0.001016, 0 deg α, 0m) 
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Figure 9 CA Components vs. Mach Number (Power Off, Turbulent, Roughness 
0.001016, α = 0 deg, Alt. = 0 m) 
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Figure 10 CA Components vs. Mach Number (Power On, Turbulent, Roughness 
0.001016, α  = 0 deg, Alt. = 0 m) 

C. COEFFICIENT OF SKIN FRICTION  

1. Effects of Power on Coefficient of Skin Friction 

The effects of power on a missile showed no change to the skin friction 

coefficient as seen in both Figure 11 and Figure 12 where Cf is plotted for altitudes of 

5000 m and 30,000 m. for the power off conditions. The skin friction values decrease 

monotonically with Mach number, perhaps due to increasing Reynolds number over the 

body length.  The nearly parallel curves lend support to this inference. The value at the 

higher altitude is higher possibly due to the increased viscosity (by nearly two orders) at 

the very large altitude of 30,000m for which this computation was carried out. However, 

turning the power 'On' or 'Off' did not significantly affect the base drag.  

CA Components vs Mach Number 
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Cf vs Mach Number 
(Power On, Turbulent, Roughness 0.001016, 0 deg α)
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Figure 11 Cf vs. Mach Number (Power Off, Turbulent, Roughness 0.001016, 0 deg α) 

Cf vs Mach Number 
(Power Off, Turbulent, Roughness 0.001016, 0 deg α)
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Figure 12 Cf vs. Mach Number (Power On, Turbulent, Roughness 0.001016, 0 deg α) 

2. Effects of Surface Roughness on Coefficient of Skin Friction 

Skin friction is largely affected by the state of the boundary layer forming on the 

missile surface. Surface roughness plays an important role in altering the boundary layer 

state and thus, in determining skin friction drag. Figure 13 and Figure 14 show plots with 

a surface roughness of zero compared to a surface roughness of 0.001016m. On a real 

missile, this roughness value represents a reasonably well painted surface. The plots from 

Missile Datcom showed significantly lower Cf values at lower altitude (20000m) for a 

smooth surface. Above 20000m, Cf was observed to be insensitive to surface roughness. 
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An analysis of the variation of the properties of air with altitude shows that up to20000 

m, the kinematic viscosity increase by an order, however between 20000 m and 30000 m, 

it raises by an order. Thus, at an altitude of 20000m and above, the Reynolds number can 

be as low as 3.0E+05. This resulted in a thick laminar layer in which the roughness 

height was only a small fraction of the total boundary layer height, which caused the Cf to 

become insensitive to surface roughness. Another possibility is the formation of a long 

laminar bubble at low Reynolds number and thus having surface roughness insensitive Cf 

values due to local flow separation inside the bubble.   

Cf vs Altitude 
(Power Off, Turbulent, Roughness 0.001016, 0 deg a)
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Figure 13 Cf vs. Altitude (Power Off, Turbulent, Roughness 0.001016, 0 deg α) 

 

Cf vs Altitude 
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Figure 14 Cf vs. Altitude (Power Off, Turbulent, Roughness 0, 0 deg α) 
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3. Effects of Mach Number on Coefficient of Skin Friction 

Cf values generally decrease with increasing Mach number as seen in Figure 13 

and Figure 14. The lowest Cf values are observed for the highest Mach number of 4.5 for 

the missile. The insensitivity of Cf at M 4.5 is still being analyzed.  

4. Effects of α on Cf 

Cf values for different angles of attack are plotted in Figure 15. Increasing α 

reduces the Cf values, although not as drastically as increasing the Mach numbers. This 

can be seen in Figure 15. As the missile increases in α, separation of air begins which 

reduces the viscous effect and results in lower Cf values.  

Comparison of Altitude and a using Cf vs Mach Number 
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Figure 15 Comparison of Altitude and α Using Cf vs. Mach Number (Power Off, 
Turbulent, Roughness 0.001016) 

D. AXIAL FORCE COEFFICIENT 

1. Effects of Power on Axial Force Coefficient 

Without power, the base drag of a missile can be as high as 50% of the total drag 

[1]. For the power off condition in Figure 16 the average CA is about 1.0 and, in Figure 

17 the average CA is about 0.55. That is a significant increase of 45% in CA with power 

off.  
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Comparison of Altitude and α Using CA vs Mach Number 
(Power Off, Turbulent, Roughness 0.001016) 
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Figure 16 Comparison of Altitude and α Using CA vs. Mach Number (Power Off, 
Turbulent, Roughness 0.001016) 

Comparison of Altitude and α Using CA vs Mach Number 
(Power On, Turbulent, Roughness 0.001016)
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Figure 17 Comparison of Altitude and α Using CA vs. Mach Number (Power On, 
Turbulent, Roughness 0.001016) 

2. Effects of Surface Roughness on Axial Force Coefficient 

At 0m, CA reduces slightly with smooth surfaces, as shown in Figure 16 and 

Figure 18 This is an expected phenomenon as a smooth surface will have a reduced Cf 

resulting in overall CA. However, in both plots, at an altitude of 20000m, CA becomes 

relatively insensitive to surface roughness.  The lower Reynolds number at high altitude 

(3.0E+05) causes Cf to vary little as discussed in Figure 6. Thus, the resulting CA remains 

unaffected.  
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Comparison of Altitude and α Using CA vs Mach Number 
(Power Off, Turbulent, Roughness 0)
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Figure 18 Comparison of Altitude and α Using CA vs. Mach (Power Off, Turbulent, 
Roughness 0) 

3. Effects of Mach Number on Axial Force Coefficient 

Variations of Mach number have a very large change on the axial force, as can be 

seen in Figure 18. Most changes are observed through the transonic Mach number 

regime. At transonic speeds, shocks begin to form on the missile body. The shocks that 

form interact with the local boundary layer, shock oscillations also can be present and an 

abrupt increase in pressure drag occurs and thus also, in the CA values. As the Mach 

number continues to increase, these shocks will move towards the nose and the tail and 

become detached from the missile body. The air on the missile body will now see a 

velocity slower than the free-stream velocity and, thus, result in lower CA values.  

4. Effects of Angle of Attack on Axial Force Coefficient 

With Mach number less than 2.5, increasing the angle of attack results in lower 

CA values as shown in Figure 19. This is due to flow separation from the surface of the 

missile body. The kink seen for the case of α = 24 deg seems to indicate that this is a 

likely scenario. Above Mach 2.5, a crossover in CA can be seen. This could be due to the 

possibility of asymmetric vortices being generated, which is typical of missile body at 

high angles of attack. These vortices will also induce side forces on the missile body, 

further affecting the resulting overall CA. 
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Comparison of Altitude and a Using CA vs Mach Number 
(Power Off, Turbulent, Roughness 0.001016) 
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Figure 19 Comparison of α Using CA vs. Mach Number (Power Off, Turbulent, 
Roughness 0, 0m) 

5. Effects of Altitude on Axial Force Coefficient 

As altitude increases, CA increases as shown in Figure 20. As explained in Figure 

12 and Figure 13 earlier, Cf value can increase with altitude as the Reynolds number 

becomes smaller. It should be noted here that Cf constitutes about 20-30% of the total 

axial force.   
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Figure 20 Comparison of Altitude Using CA vs. Mach Number (Power Off, Turbulent, 
Roughness 0) 
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E. DATA COMPARISON WITH MSIC DATA 

1. Skin Friction Coefficient Comparison with MSIC Data 

The values for CA due to friction are close to the data provided by MSIC by using 

a surface roughness of 0.001016 at an altitude of 5000m as shown in Figure 21. With 

similar surface roughness, however, the data does not match at an altitude of 30000m. At 

30000m, the same roughness may correspond to a different relative roughness since the 

boundary layer is much thicker and the Reynolds number is much lower. Thus, obtaining 

a better match with the data will require experimenting with different surface roughness 

values. It is not clear whether the Simulink model included these effects. As mentioned 

earlier, wind tunnel testing typically gives lower Reynolds numbers compared to values 

obtained from actual airplane flight [2]. Studies have shown that low Reynolds number 

shows high-drag coefficients. MSIC data shows a trend of over-predicting the Cf values 

in Figure 21. This could be an indication of the low Reynolds number generally realized 

in wind tunnel testing. Disparity from Missile Datcom (97) result is more prominent at 

30000m. At very high altitudes of 30000m, where the medium possess large deviations in 

properties from sea level, actual flight characteristics of the missile will prove difficult to 

replicate in wind tunnels.  
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Figure 21 Cf vs. Mach Number (Power Off, Turbulent, Roughness 0.001016, 0 deg α) 
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2. Axial Force Coefficient Comparison with MSIC Data 

Through clarification with MSIC, the CA data provided consists of CA due to 

pressure drag and CA due to base drag. For power ‘on’ condition, a relatively close match 

from MissileLab can be achieved. Both data can be matched relatively closely at lower 

Mach numbers up to Mach 2.0 as shown in Figure 22. This could indicate the possibility 

of inaccuracies in the creation of flow conditions for high Mach numbers in wind tunnel 

environment.  
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Figure 22 CA vs. Mach Number (Power On, Turbulent, Roughness 0.001016, 0m, 0 deg 
α) 

For the power 'off' condition, a relatively close match can be achieved by 

mapping the base drag from Missile Datcom output. The CA values from MSIC, however, 

are notably lower and appear to capture only the base drag component. 

With the assumption that MISC data captures only the base drag, results from 

Missile Datcom (97) show a relatively close match. Parameters affecting base drag 

include Reynolds number, Mach number, α, body fineness ratio, fin proximity, and the 

presence of a boat tail or flare [1]. But the contribution of Reynolds number, α, fineness 

ratio and fin proximity to base drag is small, and hence, the satisfactory match.   

  



 29

CA vs Mach Number 
(Power Off, Turbulent, Roughness 0.001016, 0m, 0 deg α) 
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Figure 23 CA vs. Mach Number (Power Off, Turbulent, Roughness 0.001016, 0m, 0 deg 
α) 

In both cases, as CA is a function of Mach number and Reynolds number, 

reproductions of the true operating conditions are crucial, and this is a challenge in wind 

tunnel testing and software modeling.  
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IV. CONCLUDING REMARKS 

A systematic study using DoD supplied empirical software packages was carried 

out to generate the aerodynamic performance coefficients of an SA-2 class missile. The 

results were compared against a data set provided by MSIC. The model geometry was 

generated using MissileLab and the computations were conducted using Missile Datcom 

(97). The study enveloped a large matrix of flow conditions. A reasonable match was 

obtained for Cf using a roughness of 0.000106m at sea-level conditions. At higher 

altitudes, a mismatch remained and this difference was explained as due to the effects of 

relative roughness that change steadily with altitude owing to the state of the boundary 

layer and its height changes concomitant with the Reynolds number changes with 

altitude. For CA, a good match was obtained for the power ‘on’ condition up to about 

Mach 2.0. Additional work needs to be carried out for a higher degree of agreement. 

A. LIMITATIONS 

This study has some limitations, ranging from the use of a geometry that is 

derived from visual observations and also, from generating it from scaled figures. Data 

from a limited experimental test matrix was the basis for comparison of the computed and 

test results. The well known, inherent limitations of test data limit the range of 

comparisons that can be made. Factors such as free-stream turbulence, scaling effects and 

Reynolds number simulation affect the wind tunnel testing results which were not 

included in the studies. 

Despite its capabilities, Missile Datcom also has some limitations which are 

reported in the literature. Future studies can overcome these by modeling the appropriate 

flow regimes for estimation of CA suitably. Improvements have also been made in later 

versions of Missile Datcom through the investigation of fin normal force and center of 

pressure prediction [8]. 

With increasing computing powers, use of CFD to solve complex aerodynamic 

problems can provide more comparable results. 
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B.  FUTURE WORK 

One of the objectives for this Thesis was to set up an in-house capability for 

missile performance computation. Due to the limited amount of time available for this 

Thesis, operating conditions and analysis of the missile were restricted to a few values. 

Further iterations on the conditions can be made with added simulation runs performed 

on missile geometry changes, such as trimmed flights or varying the wings deflection.  
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